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The Laplace transform is used to obtain a unique equation for describing essen- 
tially nonsteady heat or mass transfer in a heterogeneous medium. The equa- 
tion is used to analyze the heating of a half-space through a plane boundary. 

A detailed survey of the methods used to describe nonsteady heat transfer in dense 
granular media can be found in [i]. The possibilities of the methods are discussed in con- 
nection with experimental data on the heating of different types of layers from a flat wall. 
The methods take two approaches, each of which is largely phenomenological. The first ap- 
proach involves taking the solutions of the system of equations of heterogeneous transfer 
with a time-independent interphase heat-transfer coefficient and extending them to the region 
of heat-transfer time scales in which this system is invalid [i]. The second approach is 
based on the use of an ordinary parabolic heat-conduction equation [2] with allowance for the 
additional thermal resistance near the wall. This leads to the formulation of a boundary 
condition of the third kind for the wall. 

Although useful empirical formulas for the heat flux from the wall can be obtained by 
appropriate selection of the coefficients in the equations for interphase heat flow or the 
boundary condition, neither method adequately describes the physics of the transport process. 
In fact, as was shown in [3], the above system can be used only when the transience of the 
flow is slight. The best evidence of the conditional nature of studies that have employed 
the second approach is that physically substantiated attempts to refine the thermal resistance 
(see [4-6], for example) have only worsened the agreement between the theoretical and experi- 
mental results. Generalization of methods of the steady-state theory to essentially non- 
steady transport processes requires direct analysis of the exchange of the continuous phase 
with individual elements of the discrete phase, as was proposed in [3]. Calculations of this 
type were performed in [7, 8] (as well as [9]) for the rows of particles closest to the wall. 

To simplify the problem, we propose to ignore the nonuniformity of the temperature dis- 
tribution over the particle surface and to assume it to be equal to the mean temperature of 
the continuousphase at the point corresponding to the center of the particle. The validity 
of these assumptions was discussed in [3]; the assumption of uniformity of temperature at 
scales on the order of the dimensions of a particle is a necessary condition for the appli- 
cability of continuum methods in the description of heat transfer in heterogeneous media. 
Some ramifications of further generalizations are discussed below. 

The equation of convective heat transfer in the continuous phase is written in the stan- 
dard form 

edlcl - - ~ + u v  TI : -  ~,,ATl--nq. (1) 

To calculate the heat flux q from the continuous phase to a single particle in the ap- 
proximation being examined, we have the usual problem of the heat conduction inside a parti- 
cle with a boundary condition of the first kind. If the particles are spherical, then the 
solution of the problem, with the initial condition ~(0, rix) = TI(0 , x) has the form [I0] 

2~__..~ "c (t, ] T~ i=  ( �9 r x)  = (x) + : - -  ( t - -  t') [T~ (t', x)  - -  T~ (x)] ar ~] ( -  1)i-1 sin - exp a 2 (2) dV, 
./.~-1 " a o 

r ~  (x) = T~ ~0, x),  

where the argument is a parameter in this case. Applying the Laplace transform to (2) (the 
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transformed quantities will be denoted by an asterisk above the quantity), we obtain 

a T~ 
P 

sh ar '  
sh o~ ' 

r' ---- z~r cz-~ --a .~//- p" a ' ~ ~'2" (3) 

We use this result to calculate the transform of the heat flux to a particle: 

, /  T~ 
_--_ = _  - V --. ] .  \T~ ~ j 

dr [r=a 
(4) 

Considering that for a layer of identical spherical particles n = 3(1 - g)/(4~a 3) and insert- 
ing (4) into Eq. (i) after Laplace transformation of the latter, we arrive at the equation 

~d~c~ (pT~ - -  T] + uvr~)  = L, AT~ + 

Given the appropriate boundary conditions, the solution of this equation yields the 
transform of the mean temperature of the continuous phase. The transform of the mean temper- 
ature of the disperse phase can be obtained by averaging (3) over the volume of the particle: 

P P 

Thus, the description of nonsteady heat transfer has been reduced, first, to the solu- 
tion of the corresponding boundary-value problem for linear Eq. (5) and, second, to calcula- 
tion of the originals of the resulting transforms. The first problem is routine, while the 
second can be solved either by asymptotic methods or by established methods of numerically 
inverting Laplace transforms [ii]. It should be noted that T2(t, x) can always be found from 
the known Tl(t, x) and can be determined directly by averaging (2) without inverting (6). 

For times t >> a2/K2, the term in the square brackets in (5) can be represented in the 
form of an expansion in powers of p. Limiting ourselves to the first two terms of expansion, 
we have 

] / /  ( F / - ~ - )  1 a z 4 ~  a' l ' a  P cth a , ~ ~ p +  ___y_p2. 
• 3 • • 

If we use this in (5) and we perform the inverse Laplace transformation, we obtain the 
elliptic equation 

[edlc 1 + (1 -- 8) d2c2] OTI T -~- edlcl (uV) T1 = L, AT1 + (I -- e) a2d~c~ 02T1 
15• at 2 

with the auxiliary condition 8Tl/St = 0, t = 0. It should be noted that this equation coin- 
cides exactly with that formulated in [3]. 

Let us examine the features of nonsteady heat transfer, using as an example the unidi- 
mensional problem of the heating of a granular layer with stationary phases from a flat wall 
when the initial temperature of the phases is zero. In this case, Eq. (5) can be written in 
the form 

d2T~/d~ 2 = [p' - -  k (1 - -  Vprc th  Vp7)l T~, ( 7 ) 

where we have i n t r o d u c e d  the  d i m e n s i o n l e s s  d i s t a n c e  ~, t he  t ime ( F o u r i e r  number) Fo, and the  
pa rame te r  k: 

~k~• x F o =  a2 , k =  , ( 8 )  
= ~,X 1 a " gdlCl 

while p' is the Laplace transform parameter, corresponding to the time Fo (the primes with 
these quantities will henceforth be omitted). 
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Fig. i. Profiles of the dimensionless temperatures of the 
phases for the first Ti/T w (a) and second Ti/AQw (b) bound- 
ary-value problems with different log Fo (numbers next to 
curves); the top and bottom solid curves pertain to the con- 
tinuous and disperse phases, respectively, while the dashed 
lines correspond to the solution of the parabolic equation. 

Fig. 2. Relaxation of the temperatures of the continuous (I) 
and disperse (2) phases for the first boundary-value problem 
at $ = 0.05, k = i0 (a) and k = i00 (b); the dashed curves 
represent the solution of the parabolic equation. 

We assign a boundary condition of the third kind on the wall $ = 0; after Laplace trans- 
formation, this condition is written in the form: 

d T t  l 1 . 
= (T* - - r = ) .  ~*-- '3~ I~=o e (9)  

Solving (7) with condition (9) and the condition that TI* vanish at ~ § ~ (which deter- 
mines the choice of the origin for the temperature coordinate), we have 

T~* = C(p) exp {--~[p + k (] /pcth Vp ' - -  1)]1/2}, 

T~* , (10) 
C~)= 1 + k' [p 4- k (Yp-cth V p - -  1)] '/2 ' 

k' = b Ye~,lxdX,xl, 

where b is a coefficient with accounts for the irregularity of the arrangement of the parti- 
cles near the wall. It is introduced into the expression R = ba/X, for contact thermal re- 
sistance [2]. 
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Fig. 3. Dependence of Nu on Fo for the first boundary-value 
problem (a) and dependence of the dimensionless wall temper- 
ature Tw/AQwon Fo (b) for the second boundary-value problem: 1-8) 
k = 0, i0, 32, i00, 317, i000, 3163, I0,000. 

Introducidng the Nusselt number (with constant Tw, i.e., Tw* = Tw/P): 

AQ~ ~ OT1 I 
N u = - - ~ w ,  Q u , = - -  , - - ~  ~=0' 

we ob t a in  t he  fo l l owing  from (10) fo r  i t s  t r a n s f o r m  

a 
A = ~ V e~#1 (11) 

1 [ (  ] / p c t h ] / ~ - - l ) - ' / 2  ]-~. 
Nu* = - ~ 7 =  1 + ~  + k ' V ~  ( 1 2 )  

v p  P 

At p << 1 (Fo >> 1),  we have Nu* m ( 1  + k / 3 ) l / l p  -1 /2 ,  whi le  a t  p >> l (Fo << 1),  we have 
Nu* ~ ( k ' p )  -z 

When a boundary c o n d i t i o n  of  the  f i r s t  kind i s  used fo r  TI* on the  wa l l ,  t he  p rev ious  
e x p r e s s i o n  from (10) i s  v a l i d  and formulas  f o r  C(p) and Nu* a re  ob ta ined  from (10) and (12) 
with k' = O, i.e. 

C(p)=T~, Nu*-- ~/~ l + k  . (13) 
P 

The asymptote Nu* at p << 1 coincides with the asymptote for the third boundary-value 
problem, while at p >> 1 we have Nu* ~ p -i/2. 

When a boundary condition of the second kind is assigned on the wall, the quantity Tl* 
is again expressed by the formula in (i0) but 

c (p) = T~ = AQ$ 
[p + k (V~cth V~--  1)l'/2 (14) 

At p << 1 in the case Qw* = Qw/P, we have Tw* ~AQw(I + k13)-i/2p -3/2, while at p >> 1 
we have Tw*~AQwP -~/2 All of the above-examined asymptotes correspond to the solutions of 
problems for an ordinary parabolic equation, but with different physical parameters. 

To find the originals of the resulting solutions, we resorted to numerical inversion of 
the Laplace transform on the basis of a fourth-order interpolational method [ii]. This is 
presently the most accurate available method. Such an inversion is exact for functions of 
the form p-SPn(i/p), where Pn represents a polynomial of up to and including degree seven. 

Let us examine the character of the temperature fields in a granular mass with boundary 
conditions of the first and second kinds. Figure la shows profiles of the dimensionless tem- 
peratures of the phases T~/T w and Ta/T w for the first boundary-value problem at differ- 
ent moments of dimensionless time Fo. Also shown are profiles of mean temperature which fol- 
low from the solution of the corresponding problem for a parabolic Fourier equation with the 
thermophysical parameters characteristic of the granular medium as a whole. Similar infor- 
mation for the second boundary-value problem is shown in Fig. lb. The curves in Fig. 1 re- 
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Fig. 4. Dependence of the dimension- 
less heat flux on the wallNu = Nu//~7~ 
on Fo. The points denote experimental 
data [i], while the curves show the 
result of inversion of (13) for the 
first-boundary value problem (a) and 
(12) for the third boundary-value 
problem at k = 10 3 (b); the dashed 
lines correspond to the solution of 
the parabolic equation with I = l,; 
the numbers next to the curves denote 
values of k for (a) and k' for (b). 

flect the dynamics of heating of the disperse phase and dispersion medium at different dis- 
tances from the boundary of the body. For sufficiently low values of Fo, the solutions of 
the parabolic equation appreciably underestimate the temperature of the dispersion medium 
and appreciably overestimate the temperature of the disperse phase; this result is evidently 
connected with the fact that the one-temperature formulation of the problem does not account 
for the finite rate of interphase heat transfer. It is clear that this difference is greater, 
the greater the parameter k. The curves in Fig. 2 provide information on the relaxation of 
the phase temperatures to the "parabolic" temperature at different k. 

It is of considerable practical interest to examine the dynamics of the change in the 
heat flow to a granular mass with a boundary condition of the first kind and a wall tempera- 
ture satisfying a boundary condition of the second kind. Figure 3a shows the dependences of 
Nu on Fo with constant T w and different k changing due to variation of the properties of the 
particles as the properties of the continuous phase remain constant. At Fo + 0, all of these 
relations lie on a single straight line in logarithmic coordinates, corresponding to Nu = 
(~Fo) -I/2. When Fo + ~, they become parallel lines, with Nu = [(i + k/3)/(~Fo)] . For 
intermediate values of the Fourier number, there is a region in which the change in Nu with 
Fo is greatly slowed and, roughly speaking, Nu ~ Fo "I/4. The existence of such a region, 
expanding with an increase in k, has been confirmed by numerous experiments conducted for 
different types of granular layers [i, 2] and was substantiated theoretically in [3]: 

Figure 3b shows similar curves illustrating the change in wall temperature with the pre- 
scription of a constant heat flow to a granular body. This case is also characterized by a 
region Fo in which the increase in temperature with Fo is relatively slow. Again, the region 
expands with an increase in the parameter k. 

Figure 4 shows experimental data on the heating of granular layers of glass or slag 
spheres filled with air, helium, carbon dioxide, or freon. The data was taken from Fig. 2 
in [i]. Figure 4a also shows theoretical curves obtained by inverting Eq. (13), which is 
valid for the first boundary-value problem. With k = 10 3 , Fig. 4b shows the relations Nu(Fo) 
for the third boundary-value problem. These relations follow from (12) and correspond to 
different values of the parameter k'. Also shown are the anologous curves for the parabolic 
heat-conduction equation for a granular layer as a homogeneous heat-conducting medium. 

Figure 4 leads to the general conclusion that by allowing for relaxation phenomena con- 
nected with interphase heat transfer within the framework of the two-temperature model of 
disperse medium examined here, we can obtain agreement between experimental and theoretical 
results at considerably lower values of k' (and thus, lower values of contact resistance) 
than by means of the traditionally used one-temperature model. However, as for other well- 
known experimental results of the same type (see [12-14], for example) the accuracy of the 
experimental data (Fig. 4) is on the whole high enough so as to permit an unambiguous con- 
clusion regarding the relative significance of the effects connected, first, with relaxation 
phenomena and, second, with the influence of the contact resistance at the wall on heat flow. 
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To clearly separate these contributions, it will evidently be necessary to conduct special 
experiments in which the nonuniformity of the layer which develops near the wall due to its 
impermeability to particles is completely excluded. In principle, such experiments could be 
conducted by using solid composite materials with a dense-packed disperse phase and phases 
having different thermophysical properties. 

The developed method of reducing problems of heat conduction in disperse media to the 
solution of a single equation for the Laplace transform of the mean temperature field of the 
continuous phase is easily generalized to more complicated situations, such as when heat 
conduction is significant outside the particle as well as inside or when the temperature 
field is nonuniform. In accordance with the method proposed in [15], if we consider a dis- 
perse medium with stationary phases surrounded by a spherical particle of the discrete phase 
and we regard this medium as a quasiuniform continuum with thermophysical properties depen- 
dent on the distance to the particle surface, we have the following problem: 

p [dlcle (r) -t- d~c~ (i - -  e (r))] ~* = ~,V [[ (r I • V~*] - -  n (r) q*, r ) a, 

p z * - - T ~  'x~h~*, 0 ~ r < a ;  T * < o o ;  r = 0 ;  (15)  

T~ + ~* = *% ~,n [vT~ + f (a I • v~*l = X~nV~*, r = a; 

~*-~0,  r--~c~; • = s  

The solution of this problem determines not only the distribution of the transform ~* 
of temperature inside the particle, but also the deviation ~* of the temperature transform 
in its neighborhood from the quantity TI*, which may depend arbitrarily on x + r . Here, 
is the radius vector of the center of the particle (it is usually sufficient to consider 
only the first two terms of the Taylor expansion of ~* in powers of r). The form of the 
functions E(r) (and, thus, n(r)) and f(r/~) are determined by the packing of the granular 
system: different models for random packing were examined in [16]. If contact conductivity 
over the particle skeleton is absent, then %,f(aI~) = %1. Equation (3) corresponds to the 
solution of problem (15) in the case when ~* nearly vanishes, while the dependence of TI* on 
the coordinates is ignored. 

In principle, the theory can be generalized to heterogeneous media of a different struc- 
ture by using a semiempirical method to isolate representative elements of both phases and 
evaluate nonsteady interphase heat transfer by analyzing heat conduction within and in the 
neighborhood and such elements. The literature contains examples of similar modeling of 
heterogeneous media as sets of alternate layers or interacting blocks of more complex geom- 
etry consisting of uniform phases. 

In conclusion, we note that, in a mathematical sense, formulation of problems on dif- 
fusive-convective mass transfer in granular systems is fully analogous to the problem exam- 
ined above. Its further generalization can be connected with the presence of sources or 
sinks of a diffusive impurity created by sorption-desorption or chemical reactions. This 
point is very important for describing and analyzing processes in granular and porous beds 
of catalysts. Nonsteady phenomena are important in a practical sense, and these phenomena 
can be studied on the basis the model developed above. Also important to study are processes 
involving the propagation of moisture in cloddy soil, the filling of nonuniform porous media 
by a fluid, the establishment of steady-state filtration, and many other relaxation phenomena 
in filtration flows. 

NOTATION 
A, parameter introduced in (ii); a, particle radius; b, coefficient accounting for ir- 

regularity of particle packing near the wall; c, heat capacity; d, density; Fo, dimensionless 
time (Fourier number); k, k', dimensionless parameters determined in (8) and (i0); Nu, Nus- 
selt number; n, numerical concentration of particles; p, Laplace transform parameter; Qw, di- 
mensional heat flux to the granular layer from the wall; q, heat flux to a particle; R, con- 
tact thermal resistance; r, radial coordinate in the system connected with the particle; Ti, 
mean temperatures of the phases; Tw, wall temperature; t, time; u, rate of convective trans- 
port; x, space coordinate; ~, parameter in (3); e, porosity; Ki, thermal diffusivity of the 
materials of the phases; <, parameter in (15); %, thermal conductivity; %,, effective thermal 
conductivity; $, dimensionless coordinate; ~, temperature inside particle. Indices: 1 and 
2 pertain to the continuous and discrete phases, respectively; an asterisk above a quantity 
denotes its Laplace transform. 
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NON-NEWTONIAN PROPERTIES OF EMULSIONS IN SOLUTIONS OF SURFACE-ACTIVE 

AGENTS 

A. Yu. Zubarev UDC 539.41:541.182 

The adsorption of surface-active agents (surfactants) on channels changes 
the effective viscosity of an emulsion and gives it non-Newtonian proper- 
ties. 

Establishing the form of theological equations of state of disperse systems is one of 
the most important problems in the physical mechanics of mixtures. This problem is far from 
being resolved even for the simplest systems - suspensions of rigid particles or Newtonian 
drops in a Newtonian fluid. The situation is even more complicated if physicochemical pro- 
cesses which alter the structure of the flow near the particle are taking place on the sur- 
face of a particle or drop. Such phenomena can have a significant effect on the behavior of 
the mixture as a whole. Meanwhile, the result of this effect is impossible to predict by 
means of a phenomenological modeling of continuum equations. 

Here, we study the rheological properties of emulsions whose drops might adsorb an im- 
purity contained in the dispersion medium. It was shown in [i] that the capillary effects 
which occur in this case impart non-Newtonian properties to the emulsion even when the dis- 
perse phase and the dispersion medium are Newtonian fluids. However, it was assumed in [i] 
that sorption-~desorption processes take place at an infinitely high rate. Below, we consider 
the finiteness of these processes. At the same time, we correct the errors allowed in [i]. 
As in [i], we examine limitingly dilute mixtures in which we can ignore any particle inter- 
action. The surface tension of the drops is assumed to be strong enough to ensure that they 
are spherical in form during the flow process. 
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